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Identification of saline soils with multi-year remote sensing of crop yields 1 

 2 

ABSTRACT 3 

 Soil salinity is an important constraint to agricultural sustainability, but accurate 4 

information on its variation across agricultural regions or its impact on regional crop 5 

productivity remains sparse. We evaluated the relationships between remotely sensed 6 

wheat yields and salinity in an irrigation district in the Colorado River Delta Region. The 7 

goals of this study were to (1) document the relative importance of salinity as a constraint 8 

to regional wheat production and (2) develop techniques to accurately identify saline 9 

fields. Estimates of wheat yield from six years of Landsat data agreed well with ground-10 

based records on individual fields (R2 = 0.65). Salinity measurements on 122 randomly 11 

selected fields revealed that average 0-60 cm salinity levels > 4 dS m-1 reduced wheat 12 

yields, but the relative scarcity of such fields resulted in less than 1% regional yield loss 13 

attributable to salinity. Moreover, low yield was not a reliable indicator of high salinity, 14 

because many other factors contributed to yield variability in individual years. However, 15 

temporal analysis of yield images showed a significant fraction of fields exhibited 16 

consistently low yields over the six year period. A subsequent survey of 60 additional 17 

fields, half of which were consistently low yielding, revealed that this targeted subset had 18 

significantly higher salinity at 30-60 cm depth than the control group (p = 0.02). These 19 

results suggest that high subsurface salinity is associated with consistently low yields in 20 

this region, and that multi-year yield maps derived from remote sensing therefore provide 21 

an opportunity to map salinity across agricultural regions.  22 

 23 
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Abbreviations: ASTER, Advanced Spaceborne Thermal Emission and Reflection 1 

Radiometer; ECa, apparent soil electrical conductivity; ECe, electrical conductivity of a 2 

saturated soil extract; ECe,0-60, average ECe for 0-60 cm ; ECe,0-90, average ECe for 0-90 3 

cm; ETM+, Enhanced Thematic Mapper Plus; fAPAR, the fraction of absorbed 4 

photosynthetically active radiation; GLASOD, Global Assessment of Human-induced 5 

Soil Degradation ; NDVI, normalized difference vegetation index; rmse, root mean 6 

squared error; SAGARPA, Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca 7 

y Alimentación; TM, Thematic Mapper;  8 
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INTRODUCTION 10 

Accumulation of salts in irrigated soils has represented an important threat to 11 

agriculture throughout human history (e.g., Hillel, 1991). Presently, roughly 20% of 12 

irrigated agriculture worldwide is thought to be negatively affected by salinization 13 

(Ghassemi et al., 1995). However, large scale assessments such as GLASOD (Oldeman et 14 

al., 1990) typically rely on expert judgments from individual countries or regions, and are 15 

therefore “qualitative and (potentially) subjective” (description of GLASOD project 16 

available at http://www.isric.nl/). As Lal et al. (2004) point out, “Despite its significance, 17 

the available information on soil degradation is often based on reconnaissance surveys, 18 

public opinion, extrapolations based on sketchy data, and casual observations by 19 

interested travelers (p. 24).” 20 

Improved inventories of the extent and impact of salinity in agricultural lands are 21 

needed to more accurately assess the threat of salinization and to guide management 22 

decisions and remediation efforts that can reduce productivity losses. The lack of 23 
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objective, quantitative data reflects the difficulty of acquiring such information, in large 1 

part because of the high degree of spatial and temporal heterogeneity of soil salinity. 2 

Major advances have been made in the development and application of ground sensors 3 

that can rapidly measure ECa (an excellent review is provided by Corwin and Lesch, 4 

2003). ECa measurements are often highly correlated with variations in ECe, in particular 5 

when soil moisture is near field capacity (Lesch and Corwin, 2003), thereby allowing one 6 

to map soil ECe with non-invasive techniques. ECa sensors are thus invaluable tools for 7 

mapping salinity within individual fields, but their ability to provide a comprehensive, 8 

regional view of salinity’s extent and impact remains limited because of the time and 9 

expense required for each individual ECa survey. 10 

Satellite-based remote sensing has been widely explored as an alternative to direct 11 

field sampling because of its potential to cover large areas repeatedly through time. 12 

However, these efforts have seen limited success due to a range of factors, as reviewed 13 

by Metternicht and Zinck (2003). Approaches to detecting salinity with remote sensing 14 

can be classified as either direct, in which the reflectance of bare soil itself is evaluated, 15 

or indirect, in which vegetation type or condition is used as an indicator of salinity 16 

(Metternicht and Zinck, 2003). Successful application of the direct approach using optical 17 

remote sensing data requires low soil moisture, a high percentage of exposed bare soil, 18 

and little variation in soil surface roughness due to factors other than salinity, such as 19 

cultivation. In agricultural regions, all of these conditions are difficult to obtain because 20 

of the predominance of crop and residue cover and the high spatial variability of 21 

management practices.  22 
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Alternatively, several studies have investigated the use of remotely sensed 1 

indicators of canopy condition, such as the NDVI, to map soil salinity (Madrigal et al., 2 

2003; Wiegand et al., 1996; Wiegand et al., 1994). However, these approaches generally 3 

assume that salinity is the only factor affecting crop condition, and therefore will only be 4 

successful in situations where other factors are held constant (for instance by looking at 5 

variations within an individual field with fixed management) or where salinity has an 6 

extremely large impact on crop condition.  7 

Given the shortcomings of traditional direct and indirect methodologies, we 8 

sought to develop and test a new indirect approach that is useful under a broader range of 9 

realistic agricultural settings. Rather than consider crop condition for any single date or 10 

growing season, we utilized maps of crop yields for multiple years derived from satellite 11 

data. Comparison of field measurements of salinity with remotely sensed yields was used 12 

to evaluate the degree to which salinity is predictable from single year and multi-year 13 

yield maps. The comparison of salinity with yields also provided insight into the overall 14 

impact of salinity on regional production.  15 

 16 

METHODS 17 

Site Description 18 

 The San Luis Rio Colorado Valley (SLRCV) in Sonora, Mexico, is situated at the 19 

mouth of the Colorado River just south of the United States border (32.4º N, 114.8º W; 20 

Figure 1). The Valley consists of roughly 27,000 irrigated Ha, sown predominantly to 21 

wheat (Triticum aestivum) and a mix of vegetable crops. This study focused on the most 22 

northern of three irrigation districts in SLRVC, which covers roughly 13,000 ha. The 23 
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SLRCV lies within a region classified in GLASOD as having strong (not reclaimable) 1 

degradation from salinization, but with infrequent extent (<5% of area; Oldeman et al., 2 

1990). In contrast, local researchers often identify salinization as one of the most 3 

important constraints to crop production, with some reporting that up to 47% of land in 4 

this region is affected by salinity (López 2001).  5 

 Wheat in SLRCV is typically planted in late fall (Nov-Dec) and harvested in 6 

spring (Apr-May). Farmers normally apply one pre-plant and four auxiliary irrigations in 7 

a traditional basin irrigation system where wheat is planted as a flat, solid stand. The 8 

irrigation water for the entire SLRCV district is derived from a roughly equal fraction of 9 

surface and groundwater sources, although this fraction varies considerably throughout 10 

the region (López, 2001). Typical fertilizer rates are 250 kg N and 50 kg P ha-1, and 11 

yields average 6.0 – 7.5 ton ha-1, depending on year. Soils in this region are classified as 12 

Vertic Haplocalcids. 13 

 14 

Remote Sensing Analysis 15 

 A combination of ASTER, Landsat TM, and ETM+ images was acquired for each 16 

of the six growing seasons of wheat from 2000 – 2005 (Table 1). These images were first 17 

converted to top of atmosphere reflectance using standard sensor calibration values (Irish, 18 

1999) and georeferenced to within 30 m. The ratio of near-infrared to red reflectance (i.e., 19 

Landsat band 4 / band 3), which is positively correlated with vegetation abundance 20 

(Tucker, 1979), exhibited a bimodal distribution for most images. A simple threshold 21 

applied to each image therefore provided an indicator of pixels with active crops (Lobell 22 

et al., 2003). Pixels that contained active crops in all images acquired during the wheat 23 
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growing season were identified as wheat. To validate this approach, the area of pixels 1 

identified as wheat was summed over the irrigation district and compared with official 2 

area reports from SAGARPA (Secretaría de Agricultura, 2005), revealing errors below 3 

2% in all but one year and an rmse of just 2.4% (Table 2).  4 

 Yields were estimated for each wheat pixel using the technique of (Lobell et al., 5 

2003), which is based on a simple light-use efficiency model. Briefly, fAPAR is 6 

estimated from reflectance values in each Landsat image using previously established 7 

relationships (e.g., Los et al., 2000). Values of fAPAR are then interpolated for each day 8 

during the growing season using a pre-defined, temperature-based phenology model, and 9 

the daily fAPAR values are multiplied by incident radiation measured at a local 10 

meteorological station to estimate total light absorption throughout the growing season. 11 

Values for light-use efficiency and harvest index (the ratio of grain to aboveground 12 

biomass), based on field data, are then used to translate light absorption into estimates of 13 

wheat yields. This approach has been successfully applied in the Yaqui Valley, another 14 

wheat region in Sonora, Mexico (Lobell et al., 2003; Lobell et al., 2005). 15 

 Despite the previous validation in a region with similar characteristics, we sought 16 

to independently evaluate the wheat yield estimates in SLRCV. Ground-based 17 

measurements of field-averaged yields across a commercial landscape inevitably requires 18 

the reliance on farmer records of grain harvests. This is especially true when attempting 19 

to validate yield estimates for prior years. As a result, substantial errors in “ground-truth” 20 

yields may exist because of inaccuracies in farmer reports. We obtained records from 21 

local credit unions that contained farmer reported yields for three years: 2000, 2002, and 22 

2005. Any yields below 3 ton ha-1 or above 9 ton ha-1 were deemed unreliable and were 23 
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omitted from comparison with remote sensing estimates. In addition, the locations of 1 

some fields were ambiguously identified, and these were therefore also omitted. A total 2 

of 43 farmer-reported yield values remained for validation.  3 

  4 

Soil Sampling 5 

This study consisted of two primary field campaigns. In January 2005, an 6 

exploratory survey was conducted where soil samples were taken from 122 randomly 7 

selected fields in the irrigation district. The main goal of this survey was to document the 8 

distribution of salinity values within SLRCV and compare salinity levels to remotely 9 

sensed yields. Soil cores were taken at random locations within each of four quadrants of 10 

each field, and then combined to produce a single field sample for 0-30cm and 30-60cm. 11 

The stratified random sample (with n = 4) was based on measurements of within field 12 

heterogeneity of salinity for ten fields (Lobell, unpublished data), which indicated that 13 

this approach would result in estimates of ECe with rmse < 0.5 dS m-1. 14 

A second, targeted field campaign was conducted in September 2005 and May-15 

June 2006. Based on the observed relationships between ECe and wheat yields (see 16 

below), we hypothesized that fields with consistently low yields were more likely to 17 

contain high ECe. To test this hypothesis, a stratified random sample was collected. All 18 

pixels were first classified into two groups: (1) those that had wheat in at least five of the 19 

six years and whose yields were always below the 80th percentile of yields, and (2) all 20 

other pixels. Thirty fields were randomly selected from each group, forming a “target” 21 

and “control” sample. Due to logistical constraints, twenty fields (ten from each group) 22 

were visited prior to planting of the 2005-2006 wheat crop (in September) and another 23 
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forty fields were sampled after harvest (May-June). Samples were collected for three 1 

depths: 0-30 cm, 30-60 cm, and 60-90 cm. 2 

 3 

RESULTS AND DISCUSSION 4 

Yield Estimation 5 

 The yield estimates from remote sensing agreed reasonably well with farmer-6 

reported values, with 65% of the variance explained and most values falling near the 1:1 7 

line (Figure 2). As discussed above, the farmer-reported values represent an independent 8 

estimate of yields but are not without error. Unfortunately, a reliable estimate of the rmse 9 

between farmer-reported values and actual yields is not available, as it would require an 10 

extensive effort to measure harvests in each field. The agreement with the remotely 11 

sensed estimates nonetheless gives confidence that remote sensing measurements provide 12 

a reliable indicator of wheat productivity in this region. 13 

 14 

Salinity Survey 15 

 Measured values of ECe in the January survey are shown in Figure 3 and Table 3. 16 

Of the 122 surveyed fields, 10 had average 0-60 cm values above 3 dS m-1, and only two 17 

were above 4 dS m-1. Salinity values generally increased with depth (Table 3), suggesting 18 

that average salinity in the entire root zone, which extends to roughly 1 m, was likely 19 

higher than averages for the top 60 cm. Indeed, measurements from the second survey, 20 

when depths of 60-90 cm were sampled, showed that ECe for 0-60cm and 0-90 cm were 21 

highly correlated and could be related by the equation: 22 

ECe,0-90 = 1.05 * ECe,0-60 – 0.08,  R2 = 0.96  [1] 23 
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 1 

 2 

Thus, values of 3.0 and 4.0 dS m-1 for 0-60 cm salinity correspond roughly to 3.1 and 4.1 3 

dS m-1, respectively, for 0-90 cm.  4 

Using the standard threshold of 4 dS m-1 for defining a field as saline (Hillel, 5 

1998), only one out of 122 fields was technically saline for 0-30 cm, although nine 6 

exceeded this threshold for 30-60 cm. Moreover, wheat is classified by the USDA 7 

Salinity Laboratory as a salt tolerant crop and is commonly believed to show negligible 8 

yield response up to 6 dS m-1 (Maas and Hoffman, 1977), a value exceeded by only one 9 

field for 30-60 cm and none for 0-30 cm. The field salinity measurements, combined with 10 

standard criteria for salinity classifications, thus suggest that salt-related yield losses in 11 

this region are currently rare. 12 

 13 

Salinity-Yield Relationships 14 

 As soil samples were acquired during the 2005 season, we first compared soil 15 

ECe with yields from this season alone (Figure 4a). (Because fields were selected 16 

randomly without regard to crop type, only 72 of the 122 sampled fields had wheat in 17 

2005.) Salinity at 0-30cm and 30-60cm both were weakly related to yields, although all 18 

fields near or above 4 dS m-1 in average 0-60cm salinity exhibited relatively low yields. 19 

Interestingly, average yields exhibited a slight decline with increased salinity even at 20 

fairly low ECe (Figure 4). This suggests that the threshold model of salinity response 21 

may be an over-simplification (Katerji et al., 2003), and/or that fields with an average 22 

ECe of, e.g., 2 dS m-1 are more likely to have parts of the field above critical salinity 23 
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levels than fields with lower average ECe. In either case, the effect of salinity appears 1 

only minor until average ECe exceeding 4 dS m-1. This, combined with the fact that few 2 

fields exceeded ECe of 4 dS m-1, confirms the notion that salinity has an overall small 3 

impact on regional wheat productivity. For example, the average yield estimate for fields 4 

with ECe < 1 dS m-1 was 6.77 ton ha-1, while the average for all surveyed fields was 6.72 5 

ton ha-1. If one assumes that salinity is uncorrelated with other factors that affect yields, 6 

than the regional yield loss due to salinity in this region was just 0.8% in 2005. 7 

 Figure 4 also clearly illustrates that low yields were not a reliable indicator of 8 

high salinity, since many low yielding fields had low values of ECe. This is consistent 9 

with the notion that salinity is just one of many factors that can reduce yields. In this 10 

region, it appears that factors unrelated to ECe are the predominant cause of low yields in 11 

any single year. However, if these other factors were associated with management 12 

practices or weather conditions that varied from year to year, and salinity levels are 13 

assumed to be fairly stable over a five year period, then one would expect multi-year 14 

yield statistics to provide more reliable indicators of soil salinity. 15 

 Unfortunately, the low number of fields exceeding 4 dS m-1 in the January survey 16 

prohibited a reliable estimate of multi-year statistics for high salinity fields. As an 17 

alternative way to test the hypothesis that saline fields result in consistently low yields, 18 

we computed the proportion of fields that exhibited consistently low yields and compared 19 

it with the proportion expected by chance. If the former is significantly larger than the 20 

latter, then the presence of a factor that consistently suppresses yields is indicated.  21 

 For example, Figure 5 shows the proportion of image pixels (out of those that had 22 

wheat in all six years) that were above a specified yield threshold for 0, 1, 2, 3, 4, 5, and 6 23 



 12

years. Since the average yield varied between years, yield images for each year were 1 

converted to percentiles instead of yields, with 0% and 100% corresponding to the 2 

minimum and maximum estimated yield throughout the Valley for each year. The null 3 

distribution (i.e. the number of pixels, x, expected by chance) was calculated based on the 4 

binomial distribution: 5 

p(X = x) = nCx (1-p)x p(n-x)    [2] 6 

where p is the threshold used. Figure 5 shows the observed and null distribution for p = 7 

50% and p = 80%. In both cases, significantly more pixels were observed to exceed the 8 

threshold in 0 years than expected by chance, indicating the presence of a consistent, 9 

yield-suppressing factor. For example, roughly 39% of pixels never exceeded 80%, 10 

whereas only 26% of such pixels were expected by chance. While it is, of course, 11 

possible that factors other than salinity, such as poor management, contribute to 12 

consistently low yields, the high proportion of consistently low yielding fields suggests 13 

that this multi-year statistic provides useful information on some yield controlling 14 

factor(s), which may or may not include salinity. 15 

  16 

Targeted Field Sample 17 

To further test the hypothesis that multi-year yield statistics can be used to 18 

identify saline fields, measured ECe for the “target” and “control” groups in the second 19 

survey were compared (Table 4, Figure 6). The distribution of ECe within each group 20 

were generally not Gaussian (Figure 6), and therefore the non-parametric Mann-Whitney 21 

test was used to test differences in salinity distributions between groups. Average ECe in 22 

the targeted group were higher than the control at all depths, consistent with the 23 
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hypothesis that consistently low yields indicate the presence of elevated salinity levels. 1 

These differences were not statistically significant at 0-30 cm depth (p = 0.27), but were 2 

highly significant at 30-60 cm (p = 0.02) and moderately significant for 0-60 cm and 30-3 

90 cm average salinities (p < 0.10). Significance at 60-90 cm (p = 0.13) was lower than 4 

for 30-60 cm but higher than for 0-30 cm. 5 

 Two reasons likely explain the unique importance of salinity at 30-60 cm for 6 

wheat yields in this region. First, salinity values at 0-30 cm depth were generally lower 7 

than at 30-60 cm and almost always below 4 dS m-1 (Figure 6). Values at 30-60 cm, in 8 

contrast, were more frequently above 4 dS m-1, and thus more likely to exert an influence 9 

on crop growth. Values at 60-90 cm also commonly exceeded this threshold; however the 10 

fraction of wheat roots reaching below 60cm is typically much smaller than the fraction 11 

found at 30-60 cm (Manske and Vlek, 2002). Thus, 30-60 cm represents an overlap 12 

between depths of relatively high salinity (below 30 cm) and depths of significant 13 

amounts of wheat roots (above 60 cm).  14 

 The importance of 30-60 cm salinity illustrates that measures of surface salinity, 15 

such as those made with the direct remote sensing techniques discussed in the 16 

Introduction, may be of limited relevance to crop production even if they are perfectly 17 

accurate. Indirect methods that rely on measures of crop stress, such as the approach 18 

presented here, may therefore provide more reliable indicators of crop-relevant salinity. 19 

This conclusion, though, may depend on region-specific cropping patterns, salinity levels, 20 

and correlations between 0-30 cm and 30-60 cm salinity values, 21 

 22 

SUMMARY AND CONCLUSIONS 23 
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 Given the difficulty of assessing soil salinity and its impact on productivity at the 1 

regional scale using traditional approaches, we evaluated the potential contribution of 2 

yield datasets derived from remote sensing. Remote sensing allows a fairly rapid and 3 

accurate assessment of wheat yields at hundreds of individual fields through time, a 4 

dataset that would be very difficult to obtain by other means. Comparison of yields with 5 

salinity measurements acquired randomly throughout the region revealed a very small 6 

impact of salinity on regional wheat production. The low frequency of ECa values 7 

exceeding 4 dS m-1, the relative tolerance of wheat to salinity, and the presence of other 8 

factors that reduce yields combine to explain the insubstantial effect of salinity on 9 

production in this region. It is possible that remotely sensed yield or biomass estimates 10 

for other crops, such as alfalfa or vegetables, which are more sensitive to salinity would 11 

present greater correlations with salinity. However, the area surveyed using these crops 12 

would be significantly smaller. 13 

 A previous study (Madrigal et al., 2003) reported much stronger relationships 14 

between wheat yields and salinity in a nearby region in Northwest Mexico than found 15 

here. The authors then used this correlation along with NDVI images to calculate that 16 

58% of soils were salt-effected. However, their training sample was not obtained 17 

randomly, but rather by selecting areas with visible salinity problems. This led, for 18 

instance, to the inclusion of ECa values as high as 20 dS m-1 in the training set. While this 19 

approach may be useful for investigating yield responses to high levels of salinity, their 20 

implicit assumption that the training set was representative of the entire region was 21 

unjustified. As shown in the current study, many factors other than salinity contribute to 22 
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yield losses throughout an entire agricultural region, and yields in a single year therefore 1 

do not generally provide a reliable predictor of soil salinity. 2 

 Based on the hypothesis that yield-reducing factors other than soils will tend to 3 

vary between years, we evaluated the use of multi-year yield images to identify problem 4 

areas. Samples acquired on consistently low yielding fields exhibited significantly higher 5 

salinity levels at 30-60 cm depth, indicating that sub-soil salinity affects wheat yields in 6 

this region. The use of multi-year statistics therefore appears promising for identifying 7 

saline hotspots, although additional work is needed to test this approach, particularly in 8 

regions where salinity is a more common problem in crop productivity. Any increase in 9 

the efficiency and accuracy of salinity surveys would be a welcome advance, given the 10 

tremendous expense and difficult of regional salinity mapping with solely ground-based 11 

methodologies. 12 
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FIGURE LEGENDS 1 

1) The San Luis Rio Colorado Valley study region, as seen in band 3 of a Landsat TM+ 2 

image from Mar 31, 2002. Pixels with wheat appear dark in this image. Locations of field 3 

samples in surveys are also shown. 4 

 5 

2) Comparison of image-based yield estimates with farmer reported yields for 43 fields. 6 

 7 

3) Histograms of field average soil electrical conductivity (dS m-1) at depths of 0-30 cm 8 

and 30-60 cm. 9 

 10 

4) Comparison of soil electrical conductivity (dS m-1) measured in January 2005 at (a) 0-11 

30 cm (b) 30-60 cm and (c) 0-60 cm with image-based yield estimates for 2005.  12 

 13 

5) Histograms of the number of years a pixel exceeded the 50th (a) and 80th (b) percentiles 14 

of yield in SLRCV (black lines). Only pixels with yields in all six years were included in 15 

histogram. Dashed gray lines shows null distribution expected for random yield 16 

variations. Significantly more fields than expected by chance were never above the given 17 

yield percentiles, suggesting the existence of factors that consistently suppress yields. 18 

 19 

6) Histograms of field average soil electrical conductivity (dS m-1) at depths of 0-30 cm, 20 

30-60 cm, and 60-90 cm for 30 randomly chosen fields (left) and 30 “targeted” fields 21 

(right), which had remotely sensed yields always below the 80th percentile. 22 

 23 
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Table 1. Images used for wheat area and yield estimation in each harvest year. 1 
Harvest Year TM Images ETM+ Images ASTER Images 

2000  Feb 22, Apr 10  

2001  Jan 23, Mar 28  

2002  Feb 11, Mar 31  

2003  Jan 29 Apr 4 

2004 Feb 9, Mar 28   

2005 Feb 27, Mar 31   
 2 
 3 



 21

Table 2. Comparison of wheat area estimates from remote sensing with reported wheat 1 
area from SAGARPA. 2 

 Harvest Year 

 2000 2001 2002 2003 2004 2005 

Reported Area (Ha) 16,250 17,000 16,224 16,809 16,159 14,155 

Estimated Area (Ha) 16,549 17,063 16,073 15,895 16,288 14,306 

% Difference 1.8 0.4 -0.9 -5.4 0.8 1.1 
 3 
 4 
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Table 3. Summary statistics for ECe (dS m-1) and pH in January soil samples (n = 122). 1 
 Percentiles 

 
mean Standard 

deviation 0 25 50 75 100 

ECe, 0-30 cm 1.42 0.72 0.40 0.97 1.26 1.71 4.58 

ECe, 30-60 cm 1.90 1.18 0.37 1.17 1.61 2.17 8.86 

ECe, 0-60 cm 1.66 0.91 0.46 1.11 1.44 1.95 6.72 

pH, 0-60 cm 7.63 0.22 7.05 7.49 7.61 7.78 8.19 
 2 
 3 
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Table 4. Summary statistics for ECe (dS m-1) in target and control groups in 2005-2006 1 
soil survey. Each group contained 30 fields, whose histograms are shown in Figure 6. 2 

Depth (cm) Control mean Target Mean Mann-Whitney p-
value 

0-30 2.0 2.2 .27 
30-60 2.1 2.8 .02 
60-90 2.2 3.0 .13 
0-90 2.1 2.5 .13 
0-60 2.0 2.5 .09 
30-90 2.2 2.9 .08 

 3 
 4 
 5 
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